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Abstract. Surface growth models may give rise to instabilities with mound formation whose typical linear
size L increases with time (coarsening process). In one dimensional systems coarsening is generally driven
by an attractive interaction between domain walls or kinks. This picture applies to growth models for which
the largest surface slope remains constant in time (corresponding to model B of dynamics): coarsening is
known to be logarithmic in the absence of noise (L(t) ∼ ln t) and to follow a power law (L(t) ∼ t1/3) when
noise is present. If the surface slope increases indefinitely, the deterministic equation looks like a modified
Cahn-Hilliard equation: here we study the late stages of coarsening through a linear stability analysis of the
stationary periodic configurations and through a direct numerical integration. Analytical and numerical
results agree with regard to the conclusion that steepening of mounds makes deterministic coarsening
faster : if α is the exponent describing the steepening of the maximal slope M of mounds (Mα ∼ L) we
find that L(t) ∼ tn: n is equal to 1

4 for 1 ≤ α ≤ 2 and it decreases from 1
4 to 1

5 for α ≥ 2, according to
n = α/(5α− 2). On the other side, the numerical solution of the corresponding stochastic equation clearly
shows that in the presence of shot noise steepening of mounds makes coarsening slower than in model B:
L(t) ∼ t1/4, irrespectively of α. Finally, the presence of a symmetry breaking term is shown not to modify
the coarsening law of model α = 1, both in the absence and in the presence of noise.

PACS. 68. Surfaces and interfaces – 81.10.Aa Theory and models of film growth – 02.30.Jr Partial
differential equations

1 Introduction

In real systems, surface growth occurs on two-dimensional
(2d) substrates and therefore its modelization in one di-
mension (1d) is in general an oversimplification, mainly
justified by the possibility of obtaining a deeper under-
standing of the dynamical evolution of the system. In some
cases the surface indeed maintains a 1d profile, for exam-
ple when the relaxation of a grooved surface is studied [1].
This is not true when the surface undergoes kinetic rough-
ening or a growth instability followed by a phase separa-
tion: in both cases, noise makes the resulting morphology
2d even if the initial one is 1d. The dynamic evolution of a
vicinal surface is another possible application of 1d mod-
els. In fact, if atomic steps move in phase [2], step motion
is described by a one-dimensional growth equation.

In this paper we are interested in a growing surface
that undergoes a kinetic instability. The origin of such an
instability is related to an additional barrier that diffus-
ing adatoms must overcome to descend step edges (the so-
called Ehrlich-Schwoebel (ES) barrier [3,4]). Even in the
presence of stabilizing mechanisms, at sufficiently large
scales the ES effect can be the dominant one and the flat
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surface becomes unstable against small deformations. In
a first linear regime, a structure with a well-defined wave-
length emerges and its amplitude increases in time. At a
later stage, nonlinearities come into play and the mound
structure typically – but not unavoidably [2] – coarsens.

This simplified picture resembles spinodal decomposi-
tion and coarsening that take place during phase separa-
tion. Surface growth instability and phase separation do
have strong similarities and they can indeed be equiva-
lent in 1d [5]. However, they are definitely different in two
dimensions [6].

Generally speaking, phase separation has different
properties in one and two dimensions. We mention here
two of them [7]: (i) In 2d, coarsening is driven by the ten-
sion of domain walls while in 1d it is due to interaction
between the walls. (ii) Noise is generally irrelevant in 2d,
while it modifies the coarsening law in 1d (except in the
presence of long-range interactions).

The class of models that we study in one dimension
is of interest in two respects. First, since the slope is as-
sumed to increase indefinitely, it is not possible to speak
of domain walls between different phases. Second, being
that the interaction is long ranged, noise may happen to
be irrelevant for the coarsening law in 1d: this occurs for
some of the models studied here.



520 The European Physical Journal B

In the next section we give a short introduction
to the continuum equations that are encountered in
one-dimensional models of conserved surface growth. A
more detailed analysis can be found in recent review
papers [5,8]. In Section 3 we recall a few theoretical ap-
proaches to one-dimensional coarsening and in Section 4
we apply the linear stability analysis to our class of de-
terministic α-models. Its results are confirmed by numer-
ics. The problem of coarsening in the presence of noise is
addressed directly via stochastic numerical integration in
Section 5. In Section 6 we examine the effect of a symme-
try breaking term, while the discussion of the results and
our conclusions are presented in the final section.

2 Models for unstable surface growth

In the Introduction we have already mentioned the ES
barriers as a source of the kinetic instability. In fact, it is
well-known [9] that an asymmetry in the sticking coeffi-
cients of an adatom to a step produces a slope-dependent
current jES(m); h(x, t) and m = ∂xh are the local height
and slope of the surface. It is more convenient to use the
variable z(x, t) = h(x, t) − h̄, where h̄ = F0t is the aver-
age height, instead of h(x, t) (F0 being the intensity of the
flux). In this way the evolution equation ∂th = F0 − ∂xj
simply writes as ∂tz = −∂xj while the definition of the
slope m = ∂xh = ∂xz is unaffected.

For symmetry reasons, jES is an odd function of m.
Therefore we expect that jES ' νm at small slopes, as con-
firmed by a more rigorous analysis [5]. The asymmetry in
the sticking coefficients is generally due to the additional
energy barrier hindering the adatom from descending a
step. This gives rise to an up-hill current jES ' νm with a
positive coefficient ν. This implies that jES has a destabi-
lizing character, as easily revealed by the solution of the
linear differential equation ∂tz = −∂xjES = −ν∂2

xz(x, t) :
z(x, t) = z0 cos(qx)eωqt, with ωq = νq2.

In a continuum model, where the lattice constant a
goes to zero, the following expression for jES can be used:

jES =
νm

1 + `2Dm
2

model 1. (1)

If a discrete model with square symmetry is used, we
expect jES to vanish for m = m0 = 1/a . We can therefore
define the model:

jES = νm(1−m2/m2
0) model 0. (2)

However, other mechanisms can produce a
slope-dependent current: short-range step-adatom
interaction [3,10], post-deposition transient mobility and
downward funneling [11]. The first mechanism may be
either stabilizing or not, depending on the sign of the
step-adatom interaction while the other (non-thermal)
mechanisms are typically stabilizing, i.e. they contribute
with a negative term −ν′m to jES. Because of that,
either the ES current acquires a zero at finite slope (from
model 1 we pass to model 0) or there is a change in the
value m0 at which jES vanishes.

Finally, in a previous paper [12] we have generalized
equation (1) to a class of models (α-models) characterized
by different asymptotic behaviors for m→∞:

jES =
νm

(1 + `2Dm
2)α

model α (≥ 1) . (3)

In the Introduction we also mentioned possible sta-
bilizing mechanisms. The simplest expression for a sta-
bilizing current is the so-called Mullins term that in its
linearized form reads jM = K∂2

xm. Its origin may be
either thermodynamic (relaxation through surface diffu-
sion [13]) or kinetic (fluctuations in the nucleation pro-
cess of new islands [14,15]). A stabilizing current gives
a negative contribution to ωq. Starting from the equation
∂tz = −∂x(jES+jM) it is easily found that ωq = νq2−Kq4.
A flat surface is thereby linearly unstable against fluctua-
tions of wavelength larger than λc = 2π

√
K/ν.

Both currents jES and jM change sign if x → −x
or z → −z: the growth process cannot break the for-
mer symmetry but it does break the latter. It has been
shown [9,14] that such symmetry breaking term (intrin-
sically nonlinear) has the form jSB = ∂xA(m2), where
A ∼ m2 at small slopes and A ∼ −1/m2 at large ones. Its
presence is strictly related to the breaking of the detailed
balance principle [16] and therefore to the non-equilibrium
character of the growth process.

It has been proven [17] that jSB does not modify the
coarsening law of model 0: the effects of jSB on model 1
will be considered in Section 6.

We conclude this section by writing down explicitly the
class of growth equations that are analyzed in the paper:

∂tz(x, t) = −∂xj(x, t) + η(x, t) (4)

j(x, t) =

{
∂2
xm+ m

(1+m2)α model α
∂2
xm+m(1−m2) model 0

(5)

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = F̃0δ(x− x′)δ(t− t′).
(6)

Equation (4) is the evolution equation of the local
height z(x, t) for a conserved growth process in the pres-
ence of the shot noise η(x, t); equations (5) give the cur-
rents for the α-models and model 0, once that x, t, z have
been rescaled in order to get an adimensional equation.
Equation (6) gives the spectral properties of the noise,
whose strength F̃0 = F0a`

2/
√
νK is the only parameter

appearing in the problem: F0 is the intensity of the flux,
a is the lattice constant, ` is the diffusion length `D for
α-models (Eqs. (1, 3)) or the inverse of the constant slope
m0 for model 0 (Eq. (2)), ν and K are the prefactors of
jES and jM, respectively.

3 Theoretical approaches to coarsening

In this section we review two theoretical methods that
have been used to study the coarsening process in model 0.
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The first method uses the property that the current jES

vanishes at a finite slope m0. Although it can not be used
for α-models, for completeness and clarity we discuss it in
Section 3.1. The second method consists in a linear stabil-
ity analysis of the stationary configurations. It is a very
general method and it is discussed in Section 3.2. In the
context of phase separation processes it was introduced by
Langer [20] to study model 0 and its solution is proposed
in Section 4.1. Its application to α-models is carried out
in Section 4.2.

3.1 Kink dynamics

Model 0 and α-models have the same linear behaviour, but
they strongly differ in the nonlinear regime: in model 0 the
slope increases up to the maximal value m0 = ±1 while
in α-models it grows indefinitely.

For model 0, the surface profile corresponding to a
constant value m0 = 1 (i.e. a vicinal surface with uni-
tary slope) is stable [18], but it can not be attained start-
ing from a flat surface because the average slope must
remain constant. Still, we can consider the stationary
configuration m+(x) (j(m+(x)) ≡ 0) corresponding to a
limiting slope ±m0 for x → ∓∞. That profile is called
‘mound’ in the z-space and ‘kink’ or ‘domain wall’ in the
space of the order parameter m, where it has the form
m+(x) = tanh(x/

√
2).

During the coarsening process of model 0 a typical
surface profile is just an alternating sequence of kinks
(m = m+(x)) and antikinks (m = m−(x) = −m+(x)),
whose average distance L(t) increases with time because
of the annihilation process between pairs of neighbour-
ing kink-antikink. In the absence of noise the dynamics
of kinks is governed by their attractive interaction that
decays exponentially with the distance, since |m±(x)| '
1 − 2 exp(−

√
2|x|) for |x| � 1. Such a weak interaction

determines a very slow coarsening: L(t) ∼ ln t [19,20].
In the presence of noise the picture is different because

of the induced fluctuations on the kink positions. If there
were no constraint induced by the conservation of the or-
der parameter, kinks would simply perform a random walk
and therefore would travel a distance L in a typical time
L2, giving a coarsening exponent n = 1/2 (L(t) ∼

√
t).

In a growth process, where a conservation law does exist,
kink trajectories are not independent and the coarsening
slows down: n = 1/3. This exponent is more easily under-
stood in a spin picture [21], where the conservation of the
order parameter (the magnetization) implies that the sys-
tem evolves through spin-exchange processes (Kawasaki
dynamics).

If we now turn to α-models, we recognize that the kink
picture is not applicable because the unstable current jES

vanishes for infinite slope only.

3.2 Linear stability analysis of stationary configurations

We now discuss the linear stability analysis of the station-
ary configurations. They are determined by the condition
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Fig. 1. Profiles of the different potentials VES. From top to
bottom: Model 1 (dotted line), equation (9); Model 0 (dashed
line), equation (8); Model α = 3 (full line), equation (10).

∂tz(x, t) ≡ 0, i.e. the current must be a constant: j ≡ c.
The net current c is related to the average slope of the
surface: we are interested in a high symmetry surface and
therefore we set c = 0.

The equation j = 0 is formally equal to the Newton’s
equation for a particle of unitary mass, where the slope
m plays the role of the particle position and x the role of
time:

∂2
xm(x) + jES(m) = 0 . (7)

The fictitious particle feels the force −jES(m), i.e. it
moves in the potential VES(m) =

∫m dsjES(s). Different
models give qualitatively different potentials (see Fig. 1):

VES(m) = m2/2−m4/4 model 0 (8)

VES(m) = (1/2) ln(1 +m2) model 1 (9)

VES(m) =−(1 +m2)1−α/[2(α− 1)] model α > 1. (10)

Stationary configurations therefore correspond to the
periodic oscillations of the particle around the minimum
of VES in m = 0. We label the stationary configurations
m2L(x) through their period 2L. What about the limit
L→∞? For model 0 it corresponds to the kink-solution:
m∞(x) = m+(x) → ±1 when x → ±∞. For model 1, the
energy of the particle diverges when the period L increases
and the limiting configuration m∞(x) does not exist. It
does exist for α > 1 and it corresponds to the well defined
problem of a particle of zero energy moving in the poten-
tial (10): it starts at m = −∞ and arrives at m = +∞
after an infinite time.

We start by considering small deviations ψ from
the periodic profile: m(x, t) = m2L(x) + ψ(x, t). Since
jES(m2L +ψ) = jES(m2L) + j′ES(m2L)ψ+O(ψ2), we obtain
that the linearized evolution equation for ψ(x, t) is

∂tψ = ∂2
x [−ψ′′(x, t)− j′ES(m2L(x))ψ] (11)

and therefore the time dependence of ψ is: ψ(x, t) = φ(x)·
exp(−εt). Replacing the expression of ψ in terms of φ into
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equation (11), we find that the stability is determined by
the spectrum of the following operator:

(−∂2
x) [−φ′′(x) + UL(x)φ] ≡ DxĤφ(x) = εφ , (12)

where Dx ≡ −∂2
x and Ĥ ≡ −∂2

x+UL(x) is a single-particle
Schrödinger operator corresponding to the periodic poten-
tial UL(x) ≡ −j′ES(m2L(x)), of period L:

UL(x+ L) = −j′ES(m2L(x+ L))
= −j′ES(−m2L(x)) = UL(x). (13)

In one dimension, coarsening is due to the unstable
character of the periodic stationary configurations, i.e. to
the existence of negative eigenvalues in the energy spec-
trum [22]. Because of the periodic character of the opera-
tor DxĤ, eigenvalues are grouped into bands.

Our evolution equation form(x, t) is ∂tm = Dxj where
the current j (see Eq. (5)) can be derived from a pseudo
free energy F :

j = − δF
δm

F =
∫

dx
[

1
2 (∂xm)2 − VES(m)

]
. (14)

For model 0 the potential −VES(m) has the standard
double well shape and m(x, t) evolves accordingly to the
Cahn-Hilliard equation; in the presence of conserved noise
we obtain the so-called model B of dynamics [23]. If Dx

is replaced by the identity operator, the order parame-
ter is no longer conserved and its evolution equation is
∂tm = j, which is equivalent for model 0 to the time de-
pendent Ginzburg Landau equation, or – in the presence
of nonconserved noise – to model A of dynamics [23]. We
use the notations ε̃, φ̃ for the spectrum of the operator
DxĤ and ε, φ for the Hamiltonian operator Ĥ.

Let us start with few general statements on the low-
est part of the spectrum. Translational invariance implies
that ε = 0 is always an eigenvalue of the operator Ĥ (and
therefore ε̃ = 0 is an eigenvalue of DxĤ as well) and it cor-
responds to the eigenfunction φ(x) = φ̃(x) = m′2L(x). To
prove this let us use the definition of m2L(x) as a solution
to the differential equation (7) and take the derivative:

m′′′2L(x) + j′ES(m2L)m′2L(x) = 0 . (15)

Since UL(x) = −j′ES(m2L(x)) we just have

−∂2
x(m′2L(x)) + UL(x)(m′2L(x)) ≡ Ĥm′2L(x) = 0 . (16)

Therefore the operators Ĥ and DxĤ have a zero
energy eigenvalue and the corresponding eigenfunction
m′2L(x) has period λ = 2L (i.e. it corresponds to the
wavevector q = π/L in the Bloch representation).

We can now recognize the importance of the limit
m∞(x). If m∞(x) exists, for L→∞ the periodic potential
UL(x) becomes a single well potential U∞(x). In this limit
m2L(x) is a monotonic function m+(x) (the kink solution,
for model 0). Therefore φ̃1(x) = φ1(x) ≡ m′+(x) has no
node and it represents the ground state for the single well
problem. For finite L we have a periodic potential and the
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Fig. 2. The single well potential U∞(x) for model 0 (dashed
line) and for model α = 3 (full line). At large x the former
approaches 2, while the latter vanishes as U∞(x) = a/x2, with
a = 10/9 (dashed-dotted line, see formula (25)).

energy level ε1 = ε̃1 = 0 gives rise to the lowest band of
the spectrum. The ground state εGS(L) of the operator Ĥ
corresponds to q = 0 and must therefore have a negative
energy, implying that Ĥ has negative eigenvalues. The re-
lation ε̃GS = ε̃(q = 0) is no longer valid for the conserved
model, but Langer [20] has shown that negative eigen-
values ε of Ĥ may be put in correspondence to negative
eigenvalues ε̃ of DxĤ (see Sect. 4.1).

Since an unstable mode increases exponentially with
the factor exp(|ε|t), the knowledge of the L dependence of
the ground state energy allows to find the deterministic
coarsening law L(t) via the relations |εGS(L)| ∼ 1/t (non-
conserved model) and |ε̃GS(L)| ∼ 1/t (conserved model).

4 Deterministic coarsening

In Figure 2 we plot the single well potentials U∞(x) for
model 0 (dashed line) and for model α = 3 (full line),
the latter being representative of all the class of α-models.
Since, as already been explained, ε1 = 0 is the ground state
energy for the single well, completely different behaviors
are expected in the two cases.

For model 0 (see Sect. 4.1), U∞(x) approaches 2 at
large x: therefore the wavefunction φ1(x) decays expo-
nentially at large distances and energy shifts due to the
tunneling between wells at finite distance L are expected
to be exponentially small. This property is the counterpart
of the exponentially vanishing interaction between kinks,
discussed in Section 3.1.

For α-models (see Sect. 4.2), U∞(|x| = ∞) = 0 = ε1
and the considerations developed for model 0 do not apply.
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Fig. 3. The true periodic potential UL(x) (empty circles) is
compared with the potential U∗L (x) (full line), obtained as a
superposition of the single well potentials U∞(x − nL) (see
Eq. (18)). We make this comparison for model 0 (a), where
L ' 6.8, and for model α =3 (b), where L ' 22.8. In both
cases we display one period only. UL(x) is obtained numerically
and U∗L (x) is obtained analytically. The superposition principle
works well in (a) even for small L, while the exact potential
for model 3 (see b) is not reproduced by the sum of single
well potentials. In order to make more evident the difference
between the two potentials, in (b) we focus the plot on the
region of positive UL(x). We remind that UL(0) = −1 for any α.

4.1 Model 0

For model 0 the kink-solution is m∞(x) = tanh(x/
√

2),
the single well potential is (see the dashed line in Fig. 2)

U∞(x) = −1 + 3m2
∞(x) = −1 + 3 tanh2(x/

√
2) (17)

and the corresponding ground state wavefunction is
φ1(x) = m′∞(x) = 1√

2
sec2( x√

2
).

For finite L, UL(x) is a collection of wells centred at
points x = 0,±L,±2L, . . . . It is interesting to compare
UL(x) with the periodic potential U∗L (x) obtained as a su-
perposition of the single well potentials U∞(x− nL):

U∗L (x) = U∞(x) +
∑
n6=0

[U∞(x− nL)− U∞(∞)] . (18)

For model 0, U∞(∞) = 2 and the summation can in-
deed be limited to the two terms n = ±1 because the quan-
tity in square brackets is exponentially small. In Figure 3a
we show that U∗L (x) (full line) is an excellent approxima-
tion of UL(x) (circles).

Langer performed a tight-binding-approximation to
determine the lowest band of the energy spectrum aris-
ing from the ground state ε1 = 0 of the single well. The
result [20] is

ε(q) ' −(1 + cos qL) exp(−2L) , (19)

confirming that ε(q = π/L) = 0, εGS = ε(q = 0) and
that εGS decays exponentially with the distance L between

wells. The relation |εGS| ∼ 1/t [24] implies that coarsening
is logarithmically slow: L(t) ∼ ln t. This result is valid for
the conserved model as well. Langer proved it by means
of the variational condition [20]:

ε̃GS ≤
εGS

(φ̄1, φ1)
(20)

where

(φ̄1, φ1) =
∫

dxφ̄∗1(x)φ1(x) (21)

is the scalar product between the ground state function
φ1(x) of the Hamiltonian operator and φ̄1 is defined by
the relation Dxφ̄1 = φ1.

Because of the conservation law, the lowest energy
band for the operator DxĤ reads [20]:

ε(q) ' − sin2 qL× exp(−2L)
L

· (22)

The factor L in the denominator is irrelevant and the
coarsening law L(t) ∼ ln t is still valid. Equation (22) also
confirms that ε̃(q = π/L) = 0 and that ε̃(q = 0) is no
more the ground state.

4.2 α-models

The solution of model 0 by Langer is of great interest
because it gives approximate expressions for the lowest
energy band, both for the nonconserved (19) and con-
served (22) models. The basis of his treatment is the tight-
binding-approximation: ∆U(x) ≡ U∗L (x)−U∞(x) is taken
as a small perturbation of U∞(x).

In the case of α-models, a simpler strategy can be fol-
lowed [12] by replacing the periodic potential UL(x) with
a double well U2(x), obtained by joining rather than su-
perposing U∞(x) and U∞(x−L) [25]. Using this approxi-
mation, our analytical results for the coarsening exponent
n(α) agree well with the estimate obtained from numerical
integration of the growth equations [12] (see the results for
the conserved model reported in Fig. 9). In the following
we report the general lines of this theoretical approach,
and we add a direct numerical confirmation (see Fig. 4).

The single well potential U∞(x) for the α-models (see
Fig. 2) decays to zero at large x from positive values. From
the relation U∞(x) = −j′ES(m∞(x)) it is simple to derive
that for m� 1:

U∞(x) ∼ (2α− 1)
m2α
∞ (x)

· (23)

The integration of Newton’s equation (7) for zero en-
ergy gives the asymptotic result (x� 1):

mα
∞(x) ∼ α√

α−1
x, (24)

which implies

U∞(x) ∼ (2α− 1)(α− 1)
α2

1
x2
≡ a

x2
· (25)
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Table 1. The deterministic coarsening exponent n, for the
nonconserved (Dx ≡ 1) and the conserved (Dx ≡ −∂2

x) models.
For α = 2 there are logarithmic corrections (see [12]).

1 < α < 2 α > 2

nonconserved 1
2

α
3α−2

conserved 1
4

α
5α−2

Thus the single well potential decays as the inverse of
a square law whatever the value α, but with a prefactor a
that increases between a = 0 for α = 1 and a = 2, for α =
∞. For α = 3, a = 10

9 and the corresponding function a
x2

is reported in Figure 2 as the dashed-dotted line, showing
the comparison between the asymptotic expansion (25)
and the exact expression [26].

The solution φ1(x) of the Schrödinger equation for the
single well (let us remind that the ground state has zero
energy) therefore decays at large x as a power law [12]:
φ1(x) ∼ |x|−β , with β = (1 − α−1). So, the ground state
wavefunction is a bound state for β > 1

2 i.e. α > 2 only.
In reference [12] we used the Landau and Lifshitz ap-

proach [27] for the double-well problem and we extended it
to take into account the possibility that the ground state
wavefunction for the single well is not a bound state. This
happens for 1 < α ≤ 2. The main point is that even
if φ1(x) is not a bound state, the ground state φ2(x) of
the double well is bound, because its energy ε2 is now
strictly negative and so lower than the asymptotic value
U2(∞) = 0.

Following the above approach we found [12] that

|εGS(L)| ' L−γ γ =

{
2 α < 2

(3− 2
α) α > 2

. (26)

Once γ is known, the coarsening exponent n is just
given by n = 1/γ. In Table 1 we summarize the results
found in reference [12] for the nonconserved and conserved
models. For α = 2 there are logarithmic corrections: L ∼
(t/ ln t)n.

The reason why it has not been possible to treat the
periodic potential UL(x) in a more rigorous way is given
in Figure 3b, where it is clearly shown that the super-
position principle does not work for α-models: accord-
ingly, the potential UL(x) can not be approximated as the
sum of single-well potentials. Therefore, the application
of the tight-binding-approximation is not straightforward
because we do not know the explicit expression of the
perturbation ∆U(x) ≡ UL(x)−U∞(x). The disagreement
between UL(x) and U∗L (x) might appear at first sight to be
unimportant, but if we neglect their difference we obtain
wrong results (as we have verified).

However, it is possible to check in a direct way the ac-
curacy of our theory: we solve numerically the quantum
mechanical problem to determine the ground state energy
εGS(L) of the full periodic potential UL(x) (see Fig. 4 and
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Fig. 4. Nonconserved models: on a log-log scale (main) we re-
port the absolute value of the ground state energy εGS(L) for
the periodic potential UL(x). Circles refer to model 3 and dia-
monds to model 10. In the inset we report the local derivatives
d[log(−εGS)]/d[log(L)] and the asymptotic values of γ that are
calculated analytically (see Eq. (26)).

footnote [28]). The numerical results for the exponent γ
agree fairly well, at large L, with the theoretical predic-
tions γ(3) = 2.33 and γ(10) = 2.8. This confirms that our
theoretical approach to calculate εGS(L) is indeed correct.

4.3 Numerical analysis

Let us now discuss our numerical results for the determin-
istic α-models. We have numerically integrated the equa-
tion of motion (4) with η = 0, starting from an initial
profile z(x, 0) = rx, where rx is a random variable with a
flat distribution in the interval [−0.1, 0.1].

Typically, we have followed the dynamical evolution
for a total time tMAX ∼ 400, 000− 1, 600, 000, for a chain
length Lc = 1024, with a spatial resolution δx = 0.25 and
an integration time step τ = 0.05. A few tests have also
been performed with a smaller time step τ = 0.025 and
with longer chains (Lc = 2048− 4096), obtaining consis-
tent results. The adopted integration scheme is a time-
splitting pseudo-spectral code: more details are reported
in Appendix A.1.

At the top of Figure 5 we display a portion of the
surface profile z(x) for the model α = 3. It appears to
be made up of regions of constant slope separated by do-
main walls. However, the slope profile m(x) reported in
the centre of Figure 5 does not corroborate this picture:
no region of constant slope is clearly visible and the max-
ima or minima have appreciably different values. The same
remark is applicable at later times. On the bottom of Fig-
ure 5 we also display the potential U(x) = −j′ES(m(x))
that enters into the analytical solution of the problem (see
the previous section). It is therefore reassuring that U(x)
looks indeed as a regular sequence of the single well po-
tentials depicted in Figure 2 as a full line, because it con-
firms that the surface profile keeps close to a stationary
configuration.
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Fig. 5. Model α = 3, late stages of coarsening. Top: the sur-
face profile z(x) as obtained via numerical integration. Cen-
tre: the slope profile m(x) = z′(x). Bottom: the potential
U(x) = −j′ES(m). We display only a piece of the total spa-
tial domain.

The next step is to evaluate the characteristic length
L(t), corresponding to the average distance between wells.
We define the wavevector pc(t) via the relation:

pc(t) =

∑′
p pS(p, t)∑′
p S(p, t)

, (27)

where S(p, t) = |z̃(p, t)|2 is the power spectrum associ-
ated with the field z at time t (z̃ being its spatial Fourier
transform) and the sum is restricted to the wavevectors
p for which S(p) ≥ δ × SM, SM being the maximum
value of the spectrum and δ some threshold (typical val-
ues are δ ∼ 0.1 − 0.2). The characteristic length is then
evaluated as L(t) = 2π/pc(t) and the coarsening expo-
nent n(α) has been obtained by considering the scaling
behavior of L(t) ∼ tn in a time interval 10, 000 < t <
400, 000− 1, 600, 000.

As an independent check we have also determined L
from the normalized spatial correlation function of the
surface profile

C(r, t) =
〈z(x+ r, t)z(x, t)〉 − 〈z(x, t)〉2
〈z(x, t)2〉 − 〈z(x, t)〉2 , (28)

where the spatial average 〈·〉 is performed along the chain.
Defining L by the relation

C(L, t) = C(0, t)/2 (29)

our results are in agreement with the previous ones ob-
tained from the power spectrum in all the considered
cases.

The numerically estimated length L(t) is reported in
Figure 6 for α = 1.5, 3, 10. The coarsening exponents are
n(1.5) = 0.250± 0.003, n(3) = 0.233± 0.005 and n(10) =
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Fig. 6. Deterministic coarsening: L vs. t in log-log scale for
α = 1.5 (◦), α = 3 (�) and α = 10 (4). For presentation
purpose the data for α = 3 and 10 are shifted by a constant.
The lines indicate the best fit to the data for t > 10, 000 and
the slopes are equal to 0.250 (—), 0.233 (- - -) and 0.208 (· · · ),
in agreement with the theoretical prediction (see Tab. 1).

0.208 ± 0.002. These results are consistent with the the-
oretical estimates for n(α), as summarized in Figure 9.
Their critical discussion is deferred to the final section.

5 Coarsening with conservative noise

The stochastic equation (4) has been integrated up to a
time tMAX ∼ 800, 000 with Lc = 1024. The results for L(t)
andC(r, t) have been obtained by averaging overNc differ-
ent initial conditions with different noise realizations (typ-
ically Nc = 10). The integration scheme employed in the
noisy case is different from the one adopted for the deter-
ministic case and it is described in detail in Appendix A.2.
We have used a noise strength corresponding to a value
of F̃0 (see Eq. (6)) equal to 0.05. This is a physically rea-
sonable value because for large ES barriers [5], F̃0 ≈ a

`D
and `D is typically of the order of a few dozens of lattice
constants.

For the noisy case we have defined L only in term of the
average correlation function C(r, t), where the bar means
that the average is now performed at each time not only
along the chain (see definition (28)) but also over different
noise realizations. A sufficiently good scaling is obtained
in the time interval 40, 000 < t < 800, 000 for all the
considered values of α (= 1, 2, 10).

As a benchmark to verify the validity both of our in-
tegration scheme and of our procedure to estimate n(α),
we have analyzed model 0. In this case the coarsening ex-
ponent is known [19,20] to be n = 1/3. A good agreement
between our numerical data and the theoretical prediction
is found for t > 40, 000, as shown in Figure 7.

For the two values of α, α = 1 and α = 10, we find
n = 1/4. We conclude that, in the presence of shot noise,
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Fig. 7. Coarsening in the presence of shot noise: L vs. t in
log-log scale for model 0 (�) and for α = 1 (4) and α = 10
(◦). Dashed lines have slope 1/4 and full line has slope 1/3.

the coarsening exponent is independent of α and equal
to 1/4. Figure 7 also suggests the possible existence for
model 0 of an intermediate regime (with L ∼ 5 − 20)
where an effective exponent n = 1

4 is found.

6 Effects of a symmetry breaking term

In reference [17] one of us studied the effect of symme-
try breaking on model 0. Since in that model the slope
keeps finite with a maximal value equal to one, the de-
tailed expression of the function A(m2) (jSB = ∂xA) is
not relevant. The simplest form, was therefore chosen the
one valid at small slopes: A(m2) = λ∗m2.

On the contrary, for α-models the slope can diverge so
that the exact expression of jSB should be used [14]:

jSB = −λ∗∂x
(

1
1 +m2

)
· (30)

We limited ourselves to the physically relevant case
α = 1. We have therefore integrated the following differ-
ential equation:

∂tz = −∂x
[
∂2
xm+

m

1 +m2
− λ∗∂x

(
1

1 +m2

)]
+ η (31)

for values of λ∗ varying between 0.1 and 1.
Our results (see Fig. 8) suggest that jSB is irrelevant

for the coarsening law, both for η ≡ 0 (deterministic case)
and for η 6= 0 (noisy case).

7 Discussion and conclusions

In Figure 9 we have summarized our numerical and theo-
retical results for the coarsening exponent n (L ∼ tn). In
the absence of noise, our theory (full line) predicts that
n = 1

4 for 1 < α ≤ 2 and for larger values of α it decreases
down to 1

5 (n = 1/(5− 2
α)). Numerical results (full circles)

agree well with the full fine.
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Fig. 8. Coarsening for the asymmetric model (Eq. (31) with
λ∗ = 1), in the absence (empty circles) and in the presence
(full triangles) of shot noise. Fits have been made for t > 104

and give n = 0.25 without noise (dashed line) and n = 0.24
with noise (full line). Circles have been shifted by a constant.
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Fig. 9. The coarsening exponent n as a function of α, for the
deterministic models (full circles) and for the stochastic models
(open diamonds). In the inset we enlarge the region of small α.
Full line is the theoretical result in the absence of noise (Tab. 1)
and the dashed line is our ansatz n = 1/4 for the noisy case.

We are aware of only one analytical paper treating
our class of models (Ref. [29]). The author uses scaling
arguments to conclude that, in the absence of noise, n =
1/4 irrespectively of α and for any dimension d of the
substrate. In the following we give a drastically simplified
version of the scaling arguments. If Z,L and M = Z/L are
respectively the typical height, width and slope of mounds
at time t, the evolution equation for z(x, t) implies Z/t ∼
j/L. The current j is made up of the Mullins term, of order
M/L2 plus the ES current, whose asymptotic expression
for large slope is 1/M2α−1. They vanish in the limit t→∞
and must be of the same order in 1

t , which entails the
relation Mα ∼ L. If their sum j is supposed to be of
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the same order as well, the relation Z/t ∼ M/L3 implies
L(t) ∼ t1/4, i.e. n = 1/4 for any α.

One main drawback of the scaling argument is that
the two terms appearing in j are of the same order but
their sum is smaller (i.e. of higher order in 1

t ) because of a
compensation effect. This is a necessary condition for the
stationary configurations to play a role in the coarsening
process.

In order to have a direct numerical check of our state-
ment, we have evaluated the quantities 〈|∂xjM|〉, 〈|∂xjES|〉
and 〈|∂x(jM + jES)|〉, as a function of time, where 〈· · · 〉
means, as before, the spatial average. For all the consid-
ered values of α (α = 1, 3, 10), the result is the same: the
ratio 〈|∂xjM|〉/〈|∂xjES|〉 is equal to one, up to higher order
terms, and 〈|∂x(jM + jES)|〉/〈|∂xjM|〉 vanishes.

Our numerical results tell even more than that: in fact
scaling arguments would suggest that n is strictly smaller
than 1

4 if j is smaller than jM and jES, but for α ≤ 2 we
do find n = 1

4 even if |j|/|jM| ' |j|/|jES| → 0.
Model α = 1 had been previously studied numerically

at short times also in reference [30] and authors found a
value n ≈ 0.22, independent of the noise strength.

Let us now discuss the results in the presence of noise.
Figure 9 presents with diamonds the numerical results for
the stochastic integration of equation (4). Our data refer
to α = 1, 2, 10 and provide reasonably convincing evidence
that in the presence of noise the coarsening exponent re-
mains constant, n = 1

4 (dashed line). The somewhat larger
value for α = 2 may be due to unknown logarithmic cor-
rections.

Authors in references [31,32] use qualitative arguments
to describe coarsening assisted by noise: they use a ‘single
mound’ model and find the coarsening time by requiring
that shot noise induces a height fluctuation of the same
order of the mound height. In one dimension they find n =
1/(3+ 2

α), where α is defined phenomenologically through
the asymptotic relation M ∼ L1/α between the typical (or
the maximal) slope M and the width L of mounds.

Their prediction for n(∞) seems to agree with the re-
sult n = 1

3 for model 0. This is reasonable because in that
model the slope is constant and therefore it can effectively
be equivalent to the model α = ∞. Actually, if we take
the limit α = ∞ in equation (5), it is straightforward to
conclude that the current jES vanishes and we obtain the
linear equation:

∂tz(x, t) = −∂4
xz(x, t) + η(x, t). (32)

The basic question is whether our class of α-models
tends – in some sense – to equation (32) with increasing
α. In the absence of noise, the answer is surely negative:
indeed, equation (32) does not admit stationary periodic
solutions that, as discussed above, are crucial for deter-
ministic coarsening.

On the other hand, if noise is present (η 6= 0),
equation (32) describes a process of kinetic roughening:
the growing surface is characterized by a correlation length
ξ̃(t) ∼ t1/z̃, where z̃ is the dynamical critical exponent.
In d = 1 it is well known [4] that for the quartic lin-
ear equation (32), z̃ = 4. It is reasonable to assume that

the stochastic α-model does converge to equation (32) for
α→∞ and –in the same limit– n(α)→ 1

z̃ = 1
4 .

The meaning of a constant value n = 1
4 for any α

is simple: in the presence of noise the detailed form of
the current jES is irrelevant provided that the slope m
diverges.

We can now summarize our main results. Without
noise, n = 1

4 for α ≤ 2 and n = 1/(5 − 2
α) for α > 2.

This result has been obtained analytically and it has been
confirmed by extensive numerical calculations. It can not
be deduced by simple scaling arguments. In the presence
of noise our numerical data for α = 1, 2, 10 suggest that
n = 1

4 irrespectively of α. This assume agrees with the
well known result ξ̃(t) ∼ t1/4, valid for the linear model
α =∞. So, steepening of mounds makes coarsening faster
without noise and slower with noise.

We believe that the surface profile can not be described
as a sequence of mounds with a spatially constant slope
M that increases in time (see Fig. 5, centre). This wrong
assumption may be the reason why qualitative arguments
to determine n do fail.

We have also considered the possible effect of a sym-
metry breaking term jSB in the current: it is irrelevant for
model 1, as already proved for model 0 [17].

We conclude the paper by mentioning a different
model, whose coarsening properties bear some similari-
ties with our α-models. It has been studied by Bray and
Rutenberg [33] and it includes in the addition of a long-
range attraction between kinks to model 0. If such an in-
teraction decays as a power law of the distance (1/Ls, with
s > 1) the deterministic coarsening exponent is found to
be n = 1/(1 + s). In the presence of conservative noise,
this appears to be relevant for s > 2 and in that case
n = 1

3 . Some analogies therefore exist with our class of
α-models, because in both cases the coarsening exponent
is a continuously varying function of a parameter (α or s),
noise may be relevant (α, s > 2) or not (1 < α, s ≤ 2), and
–finally– the stochastic coarsening exponent is constant if
noise is relevant.

We warmly thank C. Castellano for a detailed and critical
reading of the manuscript. We also acknowledge useful dis-
cussions with A. Crisanti and D. Mukamel. The authors would
like to thank S. Lepri and M. Moraldi for their revision of the
manuscript.

Appendix A: Integration algorithms

Let us rewrite in an explicit way the evolution equation (4)
for the field z(x, t):

∂tz(x, t) = −∂4
xz − ∂x

[
∂xz

(1 + (∂xz)2)α

]
+ η(x, t), (A.1)

where η(x, t) indicates additive δ-correlated spatio-
temporal Gaussian noise, i.e.

〈η(x, t)〉 = 0 (A.2)

〈η(x, t)η(0, 0)〉 = F̃0δ(x)δ(t). (A.3)
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A.1 Deterministic equation

Let us first neglect the noise term: in order to perform
the numerical integration of (A.1) we consider a discrete
spatial grid of resolution δx and a discrete time evolu-
tion with time step τ . The discretized field is written as
z(i, n), where the integer indices i and n are the spa-
tial and temporal discrete variables, respectively. Periodic
boundary conditions have been considered for the field:
z(i, n) = z(i+ I, n), where I is the number of sites of the
grid (Lc = Iδx). The algorithm adopted to integrate (A.1)
is a time-splitting pseudo-spectral code [34]. In particular,
by following [35] equation (A.1) has been rewritten as

∂tz(x, t) = (L+N )z(x, t) (A.4)

where L and N are two operators defined in the follow-
ing way: Lz = −∂4

xz and N z = −∂x
[

∂xz
(1+(∂xz)2)α

]
. As

usual for time splitting algorithms, the linear evolution,
ruled by the operator L, is treated independently from
the nonlinear one (associated to the operator N ). A com-
plete evolution over an integration time step τ therefore
corresponds to the two successive integration steps:

z∗(x, t+ τ) = exp [Lτ ]z(x, t) (A.5)

and

z(x, t+ τ) = exp [N τ ]z∗(x, t+ τ) (A.6)

where z∗(x, t) is a dummy field.
Let us initially consider the linear part,

∂tz(x, t) = Lz(x, t) . (A.7)

Equation (A.7) can be easily solved in Fourier space
and the equation of motion for the spatial Fourier trans-
form of the field z̃(p, t) is

∂tz̃(p, t) = −p4z̃. (A.8)

The time evolution for z̃ is simply given by

z̃∗(p, t+ τ) = exp [−p4τ ]z̃(p, t). (A.9)

Therefore, in order to integrate equation (A.7), the field
should be Fourier transformed in space (F), then mul-
tiplied by the propagator reported in equation (A.9) and
the outcome of such an operation should be finally inverse-
Fourier transformed (F−1):

z∗(x, t+ τ) = F−1 exp [−p4τ ]Fz(x, t) . (A.10)

The integration of the nonlinear part has been per-
formed by employing a second-order Adam-Basforth
scheme

z(x, t+ τ) = z∗(x, t+ τ)

+
τ

2
[3G(z(x, t))−G(z(x, t− τ))] , (A.11)

where G(z(x, t)) =
{
−∂x

[
∂xz

(1+(∂xz)2)α

]}
. In order to ob-

tain better precision, the spatial derivatives appearing in
G(z(x, t)) have been evaluated in Fourier space.

A.2 Stochastic equation

Let us now consider the noisy problem: in this case the
algorithm outlined here above does not guarantee suffi-
cient precision. Therefore, we have developed a more ac-
curate integration scheme [36] that consists, as a first step,
of rewriting the equation of motion (A.1) in the Fourier
space

∂tz̃(p, t) = −p4z̃(p, t) +Gp(z, t) + η̃(p, t), (A.12)

where Gp(z, t) and η̃(p, t) are the Fourier transforms of
the nonlinear part and of the noise term appearing in
equation (A.1). The amplitudes η̃(p, t) of the noise compo-
nents in the Fourier space are still Gaussian δ-correlated
stochastic variables with zero average and with a variance
Vp = F0/I independent of p (white noise). The formal
exact solution of (A.12) is

z̃(p, t+ τ) =

e−p
4τ

[
z̃(p, t) +

∫ t+τ

t

dt′ ep
4(t′−t)(Gp(z, t′) + η̃(p, t′))

]
.

(A.13)

The problem now is to evaluate the two terms ap-
pearing in the integral. The first term has been evaluated
adopting a second order Adam-Bashfort scheme, i.e.∫ t+τ

t

dt′ ep
4(t′−t)Gp(z, t′) =

τ

2

[
3Gp(z, t)− e−p

4τGp(z, t− τ)
]

+O(τ3) . (A.14)

The treatment of the second term is more delicate,
since it is a stochastic integral: we have chosen to evaluate
it according to Ito’s prescription [37]:∫ t+τ

t

dt′ ep
4(t′−t)η̃(p, t′) =

[Wp(t+ τ)−Wp(t)] = ∆Wp(t). (A.15)

Here Wp(t) and ∆Wp(t) represent two Wiener pro-
cesses: in particular we have 〈∆Wp〉 = 0 and 〈(∆Wp)2〉 =
τVp. The complete solution of (A.12) can be written as

z̃(p, t+ τ) = e−p
4τ z̃(p, t)

+
3τ
2

e−p
4τGp(z, t)−

τ

2
e−2p4τGp(z, t− τ) + e−p

4τ∆Wp(t).

(A.16)

In order to obtain the solution real space it is sufficient to
inverse-Fourier transform z̃(p, t+ τ).

Due to the spatial and temporal discreteness of the
integration scheme, the spatio-temporal noise term η(x, t)
should be rewritten as γni , where γ is a random Gaussian
variable of zero average and variance

V =
τF̃0

δx
, (A.17)
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with

〈γni γ0
0〉 = Vδi,0δn,0. (A.18)

The spatio-temporal discrete Gaussian noise, with zero

average and standard deviation
√

τF̃0
δx has been numeri-

cally generated by employing a Box-Muller algorithm [34].
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29. L. Golubović, Phys. Rev. Lett. 78, 90 (1997).
30. A.W. Hunt, C. Orme, D.R.M. Williams, B.G. Orr, L.M.

Sander, Europhys. Lett. 27, 611 (1994); L.M. Sander, pri-
vate communication.

31. J. Krug, in Nonequilibrium statistical mechanics in one
dimension, edited by V. Privman (Cambridge University
Press, Cambridge, 1997), p. 305.
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